Rögzítőelemek viselkedése kőzetkörnyezetben és betonban

Tóth Máté, BME Építőanyagok és Mérnökgeológia Tanszék, matetoth.bme@gmail.com

Török Ákos BME Építőanyagok és Mérnökgeológia Tanszék, torokakos@mail.bme.hu

Hlavička Viktor BME Építőanyagok és Mérnökgeológia Tanszék

Lublóy Éva BME Építőanyagok és Mérnökgeológia Tanszék

Balázs L. György BME Építőanyagok és Mérnökgeológia Tanszék

Kovács-Sebestény Szabolcs Fischer Hungaria Bt.

ÖSSZEFOGLALÁS: A rögzítőelemek kőzetekben és különböző betonokban való alkalmazhatóságát és a kiszakításhoz szükséges erőket mutatja be ez a cikk, laborkísérletekre alapozva. A természetes kövekben történő rögzítés számos bizonytalanságot hordoz magában, a mérnöki gyakorlat azonban gyakran megköveteli ezen kapcsolatok kialakítását. Ebben a tanulmányban kétféle süttői forrásvízi mészkőben (Haraszti- és Gazda-bánya) és egy spanyol gránitban (Rosa Beta) behelyezett mechanikus és ragasztott rögzítőelemek viselkedését elemezzük, továbbá 5 eltérő szilárdságú betont is vizsgáltunk (C20/25, C25/30, C 35/45, C45/55 és C55/67). Összesen 93 db kihúzókísérletet hajtottunk végre, az összes vizsgálthoz erő-elmozdulás görbe készült. Laboratóriumi anyagvizsgálatok eredményei és a kihúzódáshoz tartozó erők közötti összefüggéseket elemeztük, különös hangsúlyt fektetve a kőzetek és a betonok nyomószilárdságára és közlekedő porozitására.

Kulcsszavak: rögzítőelemek, kihúzó kísérlet, beton, forrásvízi mészkő, gránit

1 BEVEZETÉS

A rögzítéstechnika, ezen belül a beton és acél kapcsolatok, valamint a kőelemek rögzítése egy nemzetközi szinten is kevéssé feltárt kutatási terület. A gyártók tanúsítványok útján vállalnak garanciát a kapcsolatok teherbírására, de a témában született szakirodalom a beton és kőzetek közötti különbséggel nem foglalkozik részletesen. A gyártók betonokra rendelkeznek alapos adatsorokra a kapcsolatok teherbírásáról, karakterisztikus, tervezési, megengedett maximális, ill. ajánlott terhelési értékekről. Ezek az adatok és számítási módszerek elérhetőek különböző beton szilárdsági osztályokra, segítséget adnak a kapcsolatok megtervezéséhez, de ilyen adatok nem ismertek terméskövekre vonatkozóan. A gyakorlatban a probléma megoldására, a tervezők helyszíni kihúzási próbát kérnek a gyártótól, majd ezek után a biztonság javára jóval nagyobb teherbírású elemeket terveznek be. A terméskövek viselkedését esetenként kisméretű tömör téglaként – kvázi homogén közegként - kezelik, de a kapcsolatok túlméretezése a kövek inhomogenitására való tekintettel részben érthető. A jelen cikk a természetes kőanyagok közül két kőzet típus (édesvízi mészkő és gránit) és különböző receptúrájú betonoknak a rögzítés technikai vizsgálatát mutatja be és az egyes kapcsolatok erősségét elemzi. A betonok és kőanyagok tulajdonságait és anyagjellemzőit laboratóriumi vizsgálatokkal jellemeztük. A rögzítőelemek tönkremeneteli módjának eltéréseit elsősorban kihúzásvizsgálatok alapján lehetett értékelni.

2 RÖGZÍTŐELEMEK

2.1 Rögzítőelemek típusai

A rögzítőelemek installálás időpontja szerint két csoportra oszthatóak, az ún. bebetonozott és az utolólagosan elhelyezett rögzítőelemek. Előbbire lehet példa a J illetve L alakú tőcsavarok, utóbbira a

mechanikus és ragasztott dübelek. Ebben a tanulmányban az utólagosan elhelyezett (post-installed) rögzítőelemekkel foglalkoztunk, ezek viselkedését vizsgáltuk.

A rögzítőelemek erőátadási mód szerinti csoportosítása az 1. ábrán látható. Az elmozdulás kontrollált formazáró dübel (undercut anchor) erőátadása úgy jön létre, hogy rögzítés után a dübel vége szétnyílik, teher hatására nekifeszül a speciálisan kialakított furat oldalfalához, és így adja át az igénybevételeket (1.a. ábra). A feszítődübel - lehet elmozdulás vagy nyomatékkontrollált - rögzítésekor nagy laterális irányú erőt keletkezik, ami a rögzítőelem szoknyája és a fogadó szerkezet közötti súrlódási ellenállást nagy mértékben növeli (1.b. ábra). A rögzítőelem kezdetben nem idomul a fogadóanyaghoz, megfelelő csavarónyomaték alkalmazásával vagy beütés hatására a dübel vége szétnyílik és a fent említett súrlódás létrejön a húzóerő felvételére. Az installáláshoz szükséges kifejtendő nyomaték nagysága az optimális erőátadáshoz dübeltípusonként eltérő. Ragasztott kapcsolat esetén a ragasztóban nyíró igénybevétel keletkezik. Installálásakor rendszerint a menetes szárnál nagyobb átmérőjű furat készítendő, a kapcsolat húzási ellenállását a ragasztóban fellépő nyírási ellenállás illetve a ragasztó és a beton kontaktfelületén létrejövő tapadószilárdság adja (1.c. ábra).

1.a ábra. Mechanikus kapcsolat

1.b. ábra Súrlódás

1.c. ábra Tapadás

2.2 Rögzítőelemek tönkremeneteli módjai

1.3.1. A rögzítőelem kihúzódása

A rögzítőelem kihúzódását mechanikus kapcsolat esetén a nem megfelelő szerelés illetve a kapcsolat teherbírásánál nagyobb húzóerő okozhatja (2.a. ábra). A kihúzódás során az acél horgonycsap a fogadószerkezet tönkremenetele nélkül kicsúszik, ezáltal a kapcsolat teherbírása megszűnik. A kihúzódás előfordulhat úgy is, hogy a horgonycsap megcsúszik a kihúzódáskor, az erő lecsökken, majd újra befeszül, ez esetben az rögzítőelem alján található gyűrű szenved deformációt.

Ragasztott kapcsolatok esetén ennek a tönkremenetelnek is több variációja van, úgymint a ragasztó teljes hosszon történő elnyíródása, a ragasztó részleges elnyíródása kombinálva a ragasztó és próbatest közötti felület tapadószilárdságának kimerülésével, illetve kizárólag a tapadószilárdság kimerülése a ragasztó és a próbatest közötti kontaktfelületen (Georg 2002).

1.3.2. Szakadókúpos tönkremenetel

A szakadó kúpos tönkremenetel kialakulása az alapanyag nem megfelelő szilárdságából, a túl nagy terhelésből illetve az elégtelen rögzítési mélységből adódik. Az alapanyagban - beton – a kiszakadás iránya megközelítően 35 fokos szöget zár be, így a szakadó kúp átmérője a megközelítően a rögzítsi mélység háromszorosa (2.b. ábra). A tönkremenetelkor a kúp felületén a beton húzószilárdsága kimerül, és a kúp kiszakad. A szakadókúp a terpesztett horgonycsapok esetén a rögzítési mélység aljától indul ki, de előfordul olyan eset is, hogy a szakadókúp kialakulása a horgonycsap részleges kihúzódása után alakul ki.

1.3.3. Az acél szárszakadása

A mechanikus rögzítőelemek végén található egy kisebb átmérőjű keresztmetszet, ez a keresztmetszeti terület kisebb mint a dübel névleges átmérőjéből származtatott terület (2.c. ábra). Az anyagi tönkremenetel ebben a keresztmetszetben következik be húzás esetén, ezért ezt a keresztmetszetet effektív keresztmetszetnek hívjuk. Ha a fogadószerkezet egy bizonyos szilárdságot meghalad, legtöbbször ez a tönkremenetel tapasztalható.

1.3.4. Az alapanyag hasadása

Az építőanyag felhasadásának okai lehetnek (2.d. ábra): a kapcsolat kialakításának geometriája nem megfelelő, a szélső-, tengelytáv illetve próbatest vastagságára vonatkozó előírások nincsenek betartva vagy túl nagy a dübel feszítőereje. A mérések során az ezzel a tönkremenetellel járó eredményeket figyelmen kívül hagytuk. Feltehetően a rossz befogás, alapanyag hajlítási tönkremenetele miatt ezek nem szolgáltatnak valós eredményt.

3 VIZSGÁLT ANYAGOK

3.1 A vizsgált rögzítőelemek

3.1.1 Nyomatékkontrollált feszítődübel

Nagy teljesítményű feszítődübel (fischer FBN II 8/50 gvz), galvanizált, f_u = 700 MPa szakítószilárdságú acélból készült (3.a. ábra). Rendkívül gyakran használt dübel az építőmérnöki gyakorlatban, használata elsősorban repedésmentes szerkezetekben javasolt. Nyomaték kontrollált installálás hozza létre azt az optimális súrlódási erőt, ami a húzóerőt a fogadószerkezetbe továbbítja. A szereléskor szükséges nyomaték 15 Nm, ezt egy minőségi tanúsítvánnyal rendelkező nyomatékkulccsal hoztuk létre.

3.1.2 Ragasztott rögzítések

Két, eltérő kémiai összetételű ragasztót választottunk (3.b. ábra,3.c. ábra). Az egyik kötőanyaga vinylészter hibrid, a másik epoxi-alapú ragasztó (Fischer FIS V vinylester-hybrid, Fischer FIS EM Epoxy). A rögzítési mélység 50 mm volt, és az installálás során Ø8 mm átmérőjű menetes szárat rögzítettünk. A szakszerű installálást a szabványos előírások alapján hajtottuk végre (The Guideline for European Technical Approval of Metal Anchors for Use in Concrete, EOTA).

3.a. ábra. Horgonycsap

3.b. ábra. Vinilészter ragasztó

3.c. ábra. Epoxi ragasztó

3.2 Beton próbatestek

A vizsgálatokhoz 5 különböző szilárdságú betont készítettünk (C20/25, C25/30, C40/50, C45/55, C55/67). Az összes beton receptúrához normál portlandcementet (CEM I 42.5 N), adalékanyagnak homokot és folyami kvarckavicsot használtunk. Az adalékszer BASF Glenium C323 Mix. 45 db 300x300x100 mm-es próbatestet készítettünk a kihúzóvizsgálatokhoz (4. ábra), továbbá receptúrán-ként 4 db 150x150x150 mm, és 3 db 70x70x250 mm próbatestet nyomó-, ill. hajlító-húzószilárdság vizsgálatokhoz. A beton utókezelése az előírásoknak megfelelően történt. Az 1. Táblázat tartalmazza a vizsgált betonreceptúrákat.

3.3 Terméskövek

A vizsgálatokhoz három különböző terméskövet választottunk. Kétféle forrásvízi mészkövet (Gazdabánya és Haraszti-bánya, Süttő), valamint spanyol gránitot (Rosa Beta) vizsgáltunk. A forrásvízi mészkő tömbök repedésmentesek voltak, sűrűségük 2,65-2,70 g/cm³. A gránit egy kevésbé pórusos kőzet, de hasonló sűrűségű. A kőzet próbatestek geometriája 250x200x100 mm illetve 400x200x100 mm volt. A minták geometriája megfelel a szükséges előírásoknak, tehát a próbatest vastagsága és a dübel alapanyag szélétől való távolsága nem befolyásolja a tönkremenetelt.

4. ábra. Beton próbatestek

Adalékanyag		Cement		Víz A	d.szer
0/4	4/8		kg/m3	kg/m3	kg/m3
833	463	556	290	196	0.58
833	463	556	310	189	0.62
833	463	555	365	170	2.60
833	463	555	390	160	3.90
833	463	555	410	152	6.20
	Adalék 0/4 833 833 833 833 833 833	Adalékaryag 0/4 4/8 833 463 833 463 833 463 833 463 833 463 833 463 833 463 833 463 833 463	Adalékanyag 8/16 0/4 4/8 8/16 833 463 556 833 463 556 833 463 555 833 463 555 833 463 555 833 463 555 833 463 555 833 463 555	Adalékanyag Cement 0/4 4/8 8/16 kg/m3 833 463 556 290 833 463 556 310 833 463 555 365 833 463 555 390 833 463 555 410	Adalékanyag Cement Víz A 0/4 4/8 8/16 kg/m3 kg/m3 833 463 556 290 196 833 463 556 310 189 833 463 555 365 170 833 463 555 390 160 833 463 555 410 152

1. Táblázat. Vizsgált betonreceptúrák

5. ábra. Gránit (Rosa Beta, spanyol) és édesvízi mészkő (Süttő) próbatestek

4 VIZSGÁLATI MÓDSZEREK

A vizsgálatok során háromféle rögzítőelemmel dolgoztunk, amelyek a következők: (1) FBN II 8/50, (2) FIS V vinilészter + M8 szár, és (3) FIS EM epoxi + M8 szár. Ezeket 5 eltérő szilárdságú beton és 3 eltérő kőzettípusnál alkalmaztuk. A kihúzó kísérletek során mértük az erőt és az elmozdulást, valamint az anyagfelületének (beton, kőzet) deformációját a rögzítési pont közvetlen közelében. A vizsgálatok eredményét összevetettük a számítási modellekben meghatározott illetve a katalógus által közölt értékekkel, és ellenőriztük az összeállított kísérleti modell pontosságát. Az anyagtulajdonságok jellemzésére a beton próbatesteken nyomószilárdság, hajlító-húzószilárdság és látszólagos porozitás vizsgálatok készültek. A háromféle terméskövön a vizsgálatokat két kőzetfizikai állapotban is elvégeztük. Normál laboratóriumi körülmények között és 50 fagyasztási ciklus után. A termésköveken nyomószi

lárdság, hajlító-húzószilárdság és látszólagos porozitás vizsgálatok készültek. A kihúzódáshoz tartozó erő és a nyomószilárdság, hajlító-húzószilárdság, látszólagos porozitás közötti összefüggéseket vizs-gáltuk.

4.1 A kihúzókísérlet

A terhelőgép egy INSTRON 1197 elmozdulás-vezérelt eszköz volt. Ez azt jelenti, hogy a berendezés mozgó padozata által időegység alatt megtett út állandó. A gép a maximális erő elérése után is dolgozik. Azért esett a választásunk erre a gépre, mert az említett mód szerint a tönkremenetel után a kapcsolat teherbírásának leszálló ága is vizsgálható, és a maradó erőhöz tartozó elmozdulás is megállapítható. A mérési összeállítás a 6. ábrán látható. Egymásra merőlegesen beiktatott csuklók biztosítják az terhelő-erő központosságát. Az elmozduláshoz tartozó erőt egy kalibrált erőmérő cella mérte. Két elmozdulásmérő rögzítette a kapcsolat tönkremeneteléhez tartozó elmozdulást, és további három független elmozdulásmérő a felület deformációját a rögzítési pont közvetlen környezetében. Az elmozdulásmérő tartókeretet egyedi tervezés után a BME Gyártástudomány és Technológia Tanszék gyártotta le a kísérlethez. 5 eltérő szilárdságú betonból (minősítési érték szerint: C20/25; C25/30; C40/50; C45/55; C55/67) 3-3 próbatestenként összesen 45 kihúzókísérletet hajtottunk végre (2. táblázat). A kőzeteken pedig kőzettípusonként 9, azaz összesen 27 kihúzókísérlet készült normál és további 21 kísérlet fagyasztás utáni állapotban (3. és 4. táblázat).

6. ábra. A kihúzókísérlet mérési összeállítása

No.	Horgonycsap	epoxi	vinylészter hibrid	
	pc.	pc.	pc.	
C20/25	3	3	3	
C25/30	3	3	3	
C40/50	3	3	3	
C45/55	3	3	3	
C55/67	3	3	3	
Σ	15	15	15	

2. Táblázat. Kihúzóvizsgálatok betonok

3. Táblázat. Kihúzóvizsgálatok kőzetek (normál állapot)

No.	Horgonycsap	epoxi vinyl	vinylészter hibrid	
	pc.	pc.	pc.	
Mészkő Gazda	ı 3	3	3	
Mészkő Haras	zti 3	3	3	
Gránit	3	3	3	
Σ	9	9	9	

4. Táblázat. Kihúzóvizsgálatok kőzetek (50 fagyasztási ciklus után)

No.	Horgonycsap	epoxi	vinylészter hibrid	
	pc.	pc.	pc.	
Mészkő Gazda	1	3	3	
Mészkő Harasz	zti 1	3	3	
Gránit	1	3	3	
Σ	3	9	9	

4.2 Látszólagos porozitás

A látszólagos porozitás a vízfelvételre visszavezethető fogalom, és így természetesen egy anyagjellemző. Előzetes becsléseink alapján ragasztott kapcsolatok esetén a fogadóanyag porozitása – a szilárdsági paraméterek mellett - szerepet játszik a kapcsolat teherbírásában. Ha az anyagot vízzel telítjük, és feltételezzük, hogy reményeinknek megfelelően az anyagban lévő valamennyi pórus megtelt vízzel, azaz teljes víztelítést végeztünk, akkor az anyag által felvett víz térfogata a pórusok térfogatával egyenlő. Ezért a térfogat %-ban kifejezett vízfelvétel (n térfogat %) 100-ad részét látszólagos porozitásnak nevezzük.

A vizsgálatot az MSZ EN 13755:2008 szabvány alapján végeztük el. Először a terméskő és beton próbatesteket tömegállandóságig szárítottuk, majd tömegüket és sűrűségüket lemértük. A próbatestek vízbe kerültek, majd 1, 24, 48, 72 óra elteltével megmértük a tömegüket. Tömegállandóság utáni telített tömeg mérése után az alábbi képlettel meghatározható a kövek és betonok látszólagos porozitása (1):

$$p_{iitszblagos} = \frac{n^{terfogat}}{100} = \frac{V_{viz}}{V} = \frac{M_{viz}}{M_{\rho_T}} = \frac{M_{viz}}{M} * \frac{\rho_T}{\rho_{viz}} = \frac{n^{tbmeg}}{100} * \rho_T = \left[\frac{V}{V}\%\right]$$
(1)

4.3 Nyomószilárdság vizsgálat

A nyomószilárdság vizsgálatokra a beton próbatesteken a keverést követő 28-adik napon került sor. A mérést a Form Test Alpha 3000 akkreditált nyomószilárdság mérő eszközzel végeztük a MSZ EN 12390-3:2009 alapján. A terhelés sebessége 11.25 kN/s. Receptenként 4-4 db 150x150x150 mm-es kockát vizsgáltunk.

Terméskő próbatestek esetén nyomószilárdság mérést egy WPM DrMB200 akkreditált terhelőgéppel végeztük el (7. ábra). A mintákat a rendelkezésre álló tömbökből gyémántfejű magfúróval vágtuk ki, úgy hogy az átmérő: magasság aránya a szabvány szerint 1:2 legyen. A vizes fúrási technológia következtében, a fúrást követően a mintákat tömegállandóságig szárítószekrényben szárítottuk. Mind a három kőzettípusból 3-3 db henger próbatestet készítettünk (Ø55mm, H=100mm), a mérés előtt magasságaikat és átmérőjüket akkreditált digitális tolómérővel mértük le századmilliméter pontossággal. A nyomószilárdság mérést fagyasztási ciklusvizsgálat előtt és után is elvégeztük. Tömegüket gramm pontossággal mértük. A nyomószilárdságok a teherbírás várható értékeként jelennek meg. A vizsgálatot a MSZ EN 1926-2007 szerint végeztük.

7. ábra. Nyomószilárdság vizsgálatok

4.4 Hajlító-húzószilárdság vizsgálat

A húzó-hajlító szilárdság mérést beton próbatesteken 70x70x250 mm-es hasáb alakú próbatesteken végeztük el, receptenként 3-3 darabon. A terméskövek geometriája 25x40x200 mm volt. A mérést beton és terméskő próbatesteken egy WPM ZDM 10/91 típusú akkreditált, 3 pontos hajlító-húzó gépen végeztük. A támaszköz 200 mm volt beton és 150 mm volt terméskő próbatestek esetén. A kiértékeléshez használt szabványok: MSZ EN 13161-2008 és MSZ EN 12390-5.

4.5 Időállósági vizsgálat

A terméskő próbatesteken lefuttattunk 50 fagyasztási ciklust, úgy hogy korábban már a rögzítőelemeket behelyeztük a próbatestekbe. A hőmérséklet -20°C- +20°C között változott. Ezzel a vizsgálattal a kő-acél kapcsolatok teherbírásának esetleges változást kívántuk kimutatni, valós környezeti körülmények gyorsított szimulálásával. A kihúzókísérleteket tehát két részletben végeztük a termésköveken, normál laboratóriumi körülmények között illetve 50 fagyasztási ciklust követően. A két kísérletsor eredményeit összevetve következtethetünk a rögzített kapcsolatok időállóságára.

5 EREDMÉNYEK

5.1 Jellemző tönkremeneteli módokhoz tartozó erő-elmozdulás görbék

Az acél szárszakadásnál az erő-elmozdulás ábra teljes hasonlóságot mutat az acél $\mathbf{6}$ - $\mathbf{\epsilon}$ diagrammjával (8. ábra). Jól látható a kezdeti lineáris szakasz, ezt követi az expanziós gyűrű szétnyílása illetve az erő visszaesése a tönkrementelt megelőző szakaszon. Betonszilárdság szempontjából megállapítható, hogy f_{ck} =50 MPa nyomószilárdság felett ez a jellemző tönkrementel a horgonycsapos (FBN II 8/50) kapcsolat esetén. A gránit és a két forrásvízi mészkő nyomószilárdsága fagyasztási ciklusvizsgálat előtt és után is meghaladta a 35 MPa-t, így a tönkrementel horgonycsap esetén minden esetben az acél szakadása volt. Az FBN II 8/50 tönkrementeléhez tartozó elmozdulások átlaga 6,2 mm volt, tehát a kapcsolat duktilis, szabad szemmel látható alakváltozás előzi meg a kritikus erő elérését.

Ragasztott kapcsolat esetén is jól megfigyelhető a σ - ϵ szabványos jellege, ezen értékek a Ø8 menetes szár esetén azért nagyobb értékek, mert a Ø8-as horgonycsap esetén a húzás egy csökkentett – effektív – keresztmetszetben okoz szakadást, a menetes szár esetén a húzásra igénybevett keresztmetszet nagyobb. A FBN II 8/50 (gvz) horgonycsap effektív keresztmetszete 22.9 mm², míg a Ø8-as szár húzott keresztmetszete 32,16 mm².

A menetes szárakat és horgonycsapokat külön acél-húzókísérletnek is alávetettük, és így is igazoltuk a mérési összeállításunk pontosságát, valamint a szakadáshoz tartozó erőket.

Szakadókúpos tönkremenetel, mind a kőzeteknél, mind a betonoknál jelentkezett. A betonpróbatesteknél megállapítható, hogy f_{ck} =35MPa-nál kisebb nyomószilárdság esetén kiszakadó kúp keletkezik tönkremenetelkor. A görbékből látható hogy a kúp megjelenése után a kapcsolatnak marad tartaléka legtöbb esetben. A 9. ábrán a bal oldali görbe az FBN II 8/50 teljes szakadókúpos tönkremenetelét mutatja C20/25 szilárdságú beton esetén. A görbén a maximális erő elérése után röviddel a kúp megjelenik. Ebben az esetben a kúp a rögzítő elem aljától kb. 35 fokos szögben szakad ki. A kúp teljes kiválásáig azonban további erőtartalék és alakváltozás tapasztalható. Ennek magyará-

zata, hogy a kúp teljes külső felületén a beton húzási ellenállása nem egyszerre merül ki. A 9. ábra jobb oldali görbéhez gazdabányai forrásvízi mészkőbe rögzített (FIS V) menetes szár tartozik. Ebben az esetben a lineáris szakasz 8.3 kN-nál véget ér, és a képen látható gallér jelenik meg, tehát itt részleges kúpról beszélünk, és a tönkremenetel utáni ellenállást a ragasztó és a kő között létrejövő súrlódás adja. A kapcsolat jelentős tartaléka látható abból is, hogy a maximális erőt a "kő-gallér" megjelenése után éri el. Ez a tönkremenetel tehát a részleges szakadókúp és kihúzódás kombinációja.

A vizsgálatok során előfordult olyan eset is, ragaszott kapcsolat esetén, amikor a kúp a fent említett módon a menetes szár alsó végétől indult ki, itt a galléros tönkremenetel annak speciális jellege miatt került külön kiemelésre.

8. ábra. Acél szárszakadás erő-elmozdulás grafikonja két kőzetváltozatnál és egy beton típusnál

Rögzítőelem kihúzódása során fém dűbel teljesen kihúzódik a próbatestből, a ragasztó elnyíródik, vagy a ragasztó és a próbatest közötti kontaktfelületen a tapadószilárdsági ellenállás kimerül (10. ábra). Előfordulhat, hogy egy kis szakadókúp is tapasztalható, mely a próbatest felszíne alatt kb. 1 cm mélységtől indul, ez egy részleges szakadókúp. Ezen a görbén megfigyelhető a nagy meredekség és rideg viselkedés, nagyon hosszú a kezdeti lineáris szakasz. A ragasztó elnyíródása a vinilészter-hibrid ragasztós kapcsolatnál, a tapadószilárdság kimerülésével járó tönkremenetel az epoxi ragasztós kapcsolat esetén figyelhető meg. Fontos megkülönböztetni a két tönkremenetelét, mert elnyíródás esetén a ragasztó teljesen kihasznált, a másik esetben nem.

A 10. ábrán látható, hogy az epoxi ragasztó nem szivárgott bele az édesvízi mészkő pórusaiba, és kihúzódása során a ragasztó nem nyíródott el, hanem a ragasztó a fémszár felületén maradt. Ebben az esetben a ragasztó felülete és a furat belső oldala között tapadószilárdságot haladta meg a húzóerő.

Az alapanyag felhasadásával jellemezhető tönkremenetelhez tartozó erő-elmozdulás görbék egy lineáris szakaszból állnak, majd ennek hirtelen megszűnése az alapanyag felhasadását jelenti. A felhasadásos tönkremenetelből kapott erő értékeket nem vettük bele az eredmények kiértékelésébe.

9. ábra. Szakadókúpos tönkremenetel

10. ábra. Tapadás megszűnése, rögzítőelem kihúzódása édesvízi mészkő próbatestből

5.2 Nyomószilárdság – kihúzási erő összefüggése

Horgonycsavar (FBN II 8/50 gvz) esetén látszik, hogy 50 N/mm² nyomószilárdság felett mindig acél szárszakadás következik be, tehát a kapcsolat a rögzítőelem szempontjából teljesen kihasznált. 50 N/mm² nyomószilárdság alatt szakadókúpos tönkremenetelt tapasztaltunk. Az acél szárszakadáshoz tartozó erő átlaga 16.8 kN és az ehhez tartozó elmozdulások átlaga 6,4 mm volt. A terméskövek nyomószilárdsága meghaladta az 50 MPa-t, minden esetben acél szárszakadást tapasztaltunk.

Epoxi ragasztóval rögzített kapcsolatok esetén ahogy növekszik a beton nyomószilárdsága, nagyjából lineárisan növekszik a kihúzáshoz tartozó erő értéke is. Ez a tendencia azonban nem mutatkozik a kövek esetén, ugyanis a ragasztó nem tud behatolni a kevésbé porózus terméskövek kapillárisaiba. Tönkremenetel szempontjából 84 N/mm² nyomószilárdság felett a teljes szakadókúp helyett csak egy részleges szakadókúp tapasztalható, ennek magyarázata, hogy a kövek hajlító-húzószilárdsága nagyobb, ezáltal nagyobb potenciális kialakú kúp felületén a húzási ellenállás értéke. A nyomószilárdságon kívül tehát más tényezők is befolyásolják a kapcsolatok teljesítményét.

5.3 Hajlító-húzószilárdság – kihúzási erő összefüggések

A szakadókúp egy húzási tönkremenetel, a kúp palástja mentén kialakuló húzófeszültségek meghaladják a húzási ellenállás értékét és a kúp kiválik a próbatestből. Itt is megfigyelhető, hogy a próbatest hajlító-húzószilárdsága befolyásolja ezt a húzási ellenállást ill. a teljes szakadókúp kialakulását. Részleges szakadókúp alakul ki 13 N/mm² húzószilárdság felett, ezalatt az érték alatt teljes szakadókúp kialakulását figyelhettük meg.

5.4 Látszólagos porozitás – kihúzási erő összefüggések

A ragasztott kapcsolat esetén a nagy nyomószilárdságú, de kis porozitású haraszti mészkőhöz (porozitás=2,1% V/V), illetve gránithoz (porozitás = 1,0% V/V), kisebb kihúzási erő tartozik, mint a kisebb nyomószilárdságú, de nagyobb porozitású betonokhoz (porozitás receptúrától függően= 5,9 % - 11,9 % V/V). Az általunk vizsgált legnagyobb nyomószilárdságú Haraszti mészkő (87 N/mm²) estén a rögzítések jóval kisebb átlagos kihúzási erővel jellemezhetők, mint a jóval kisebb szilárdságú (33-78 N/mm²), de nagyobb porozitású betonok. Ez arra utal, hogy a ragasztott kapcsolatok esetén a próbatestek porozitása nagyban befolyásolja a kihúzáshoz tartozó erő nagyságát.

5.5 Fagyasztási ciklusvizsgálat hatása

A fagyasztási ciklusvizsgálat után mért eredmények és a normál körülmények között mért értékek a terméskövekben beépített rögzítések időállóságát mutatják meg. Horgonycsapok esetén nem történt változás a vizsgálat után, a kihúzódáshoz tartozó erő továbbra is 16.5 kN átlagosan, és a tönkremenetel minden esetben acél szárszakadás volt. Az epoxi ragasztós kapcsolatok esetén a kapcsolatok teljesítménye továbbra sem mutat jelentős változást (12. ábra). A vinilészter ragasztó viselkedése bizonytalan a fagyasztási ciklusvizsgálat után mészkő esetén (13. ábra).

12. ábra. Epoxi ragasztó (FIS EM)

13. ábra. Vinilészter ragasztó (FIS V)

6 ÉRTÉKELÉS

A cikk arra keres választ, hogy a terméskövekbe, mint kevésbé homogén anyagokba beépített rögzítések és a betonokba beépített rögzítések milyen eltérően viselkednek. Ennek azért van jelentősége, mert a gyártók hiányos adatokkal rendelkeznek terméskövekbe történő rögzítések tartósságával kapcsolatban, és ilyen jellegű a termésköveket és a betonokat összehasonlító hazai vizsgálat még nem készült. A tervezési modellekben és a rögzítőelemekkel foglalkozó segédletekben főként az anyag (beton, kőzet) nyomószilárdságát veszik figyelembe. A kísérletek során 3 gyakori rögzítési rendszert: 1) nyomatékkontrollált feszítődübel, 2) vinilészter hibrid ragasztóval ill. 3) epoxi alapú ragasztóval rögzített menetes szárt vizsgáltunk. Az összesen 45 beton (C20/25, C25/30, C40/50, C45/55, C55/67 receptura), és 48 terméskő (süttői Gazda ill. Haraszti-bánya, és spanyol Rosa Beta gránit) komplex kihúzókísérlete és az anyagjellemzőket leíró további nyomó- ill. hajlító-húzószilárdság és porozitás mérések alapján megállapítható, hogy a kezdeti feltételezéseknek megfelelően a kapcsolatok teherbírását nem csak a nyomószilárdság befolyásolja. A beton próbatestek porozitása 5-11% között volt, a terméskövek porozitása minden esetben 5% alatt volt. Nyomószilárdság szempontjából a süttői Haraszti bányából származó édesvízi mészkő illetve a spanyol gránit volt a legerősebb, mégis a kihúzókísérletek során azt tapasztaltuk, hogy nem a termésköveknél mértük a nagyobb kihúzóerőt. A magyarázatot abban találjuk, hogy a ragasztó a beton nyílt pórusaiba jobban beszivárog és jobb kötést biztosít, így nagyobb kihúzó erőt és jobb rögzítési kapcsolatot ad, mint a terméskövek esetén. A kísérletek után félbehasított próbatestek is igazolják a feltevésünket, a terméskövekbe a ragasztó nem szivárog bele, annak kisebb porozitása miatt. Azaz a porozitás szerepe igen nagy a ragasztott kapcsolatok esetén, méréseink szerint jelentősen befolyásolja a kapcsolat teherbírását.

KÖSZÖNETNYILVÁNÍTÁS

A szerzők köszönetüket nyilvánítják ki a Reneszánsz Kőfaragó Zrt.-nek, Bene Zoltán igazgatónak, a terméskövek biztosításáért, a BME Gyártástudomány és Technológia Tanszék segítségéért a kísérleti eszközök legyártásában. A laboratóriumi méréseknél segítségünkre volt az Építőanyagok és Mérnök-geológia Tanszék sok kollégája, akiknek ezúton tartozunk köszönettel. A cikk megírása kapcsolódik a "Minőségorientált, összehangolt oktatási és K+F+I stratégia, valamint működési modell kidolgozása a Műegyetemen" c. projekt szakmai célkitűzéseinek megvalósításához. A projekt megvalósítását az Új Széchenyi Terv TÁMOP-4.2.1/B-09/1/KMR-2010-0002 programja támogatja.

IRODALOM

- Eligehausen R., Fuchs W., Sippel T.,2000. Anchorage to Concrete, *TARTOK 2000*, Budapest 2000, 261–270.
- Georg F., 2002. Guideline for European Technical Approval of bonded anchors, *Proc. Bond In Concrete 2002* pp.431-438., Gy.L.Balazs, Peter J.M. Bartos, J.Cairns, A.Borosnyói,
- Lublóy É, Balázs L. Gy., 2007. Behaviour of expansion and bonded anchors subjected to elevated temeperatures, *Connections Between Steel And Concrete Volume 1*, Eligehausen R., Fuchs, W..Genesio, G Grosser, P. (eds) ibidem-Verlag, Stuttgart, pp. 329-338,
- Nemes R., Lublóy É., 2011. Application of anchors under special concrete conditions, *Periodica Polytechnika Civil Engineering* **55**/1, 73-79.
- Sara C., Giovanni M., Gianpaolo R., 2007. Expansion anchors in high performance concrete, *Connections Between Steel And Concrete Volume 1*, R.Eligehausen, W.Fuchs, G.Genesio, P. Grosser, ibidem-Verlag, Stuttgart 2007 pp.297-306. ISBN 978-3-89821-807-8

Technical Handbook - Europe, Fischerwerke GmbH., Stuttgart, 2010.

Termékkatalgógus 2009, Fischer Hungary Bt., Palatia Nyomda és Kiadó Kft., Győr