A presszióméteres mérések és a talajjellemzők

Mecsi József

Pécsi Tudományegyetem Pollack Mihály Műszaki Kar, e-mail mecsi@pmmk.pte.hu

ÖSSZEFOGLALÁS: Presszióméteres talajvizsgálatnak nevezzük azt az in-situ talajvizsgálati módszer, melynél egy hengeres testet a talajban (kőzetben) kitágítanak, a flexibilis membrán felületére ható folyadék (gáz) nyomásának segítségével. A határfelületi elmozdulások, talajnyomások (pórusvíznyomások) közvetlen, vagy közvetett mérésével határozzák meg a talajfeszültség és a talajelmozdulás összefüggését megadva a presszióméteres diagramot.

A vizsgálat során két paramétert az un. határnyomást és a Ménard féle modulust határozzák meg. A vizsgálat azonban lehetőséget ad arra is, hogy a talajfizikai jellemzők kombinációit becsüljük, a diagramot felhasználjuk a mérnöki szerkezetek méretezésénél.

A cikk elméleti megfontolásokat és modellt mutat be a talajban (kőzetben) kitágított hengeres üregek körüli feszültség és talajrészecske elmozdulások elméleti vizsgálatára és felhasználására a talajfizikai jellemzők kombinációjának meghatározásánál.

Kulcsszavak: presszióméter, Mohr-Coulomb feltétel, Menárd típusú presszióméter

1 BEVEZETÉS

1. A presszióméteres mérési eljárás története

A presszióméteres mérési elvet először Ktatorov (1930), majd Kögler (1933) írta le. Ménard 1955ben használta először a presszióméter elnevezést. 1957-ben készült el az első prototípus Franciaországban. Az 1960-as évek közepén tervezték a G-típusú pressziómétereket. Hidraulikus rendszerűek, 3 cellás kialakításúak 25 m-ig használatosak. Jelenleg a legelterjedtebb presszióméter típusok. 1958-től fokozatosan dolgozták ki a különböző mérnöki szerkezetek méretezési elveket a presszióméterrel meghatározott határfeszültség és a presszióméteres deformációs modulus felhasználásával. A hagyományos pressziómétereknél a térfogati deformációt a nyomás alatti folyadék térfogatának mérésével határozták meg. Az első közvetlenül deformációt mérő presszióméter a Japánban 1971-ben kifejlesztett Oyo elasztomer volt. A fúrási technológia talajállapotot kedvezőtlenül befolyásoló hatásának minimalizálására fejlesztették ki az önlefúró pressziómétert, melyet általánosan 1978-től alkalmaznak. A Cambridge-ben kifejlesztett típusát Camcométernek is nevezik. Monocellás kialakítású, három keresztmetszetben, 3 irányban méri a membrán sugárirányú elmozdulását 1/100 mm-es pontossággal. A talajba juttatása a talajtípustól is függő speciális késekkel történik a fúrófejnél. A presszióméteres technika fejlődésére igen nagy hatással van a méréstechnika és a számítástechnika fejlődése. A mérnöki gyakorlatban sokféle presszióméter típus van. A pressziómétereket általában kis szériákban készítik. Fontos, hogy a presszióméterek kialakításának alapelveit a mérések végrehajtási módjait, az adatok elemzéseit nemzetközileg is azonos alapelvek szerint végezzék.

2 A PRESSZÍÓMÉTERES TALAJVIZSGMATOK ALAPTÍPUSAI:

A presszióméteres vizsgálatok alaptípusait az 1.sz. ábra mutatja be.

1. ábra. Különböző presszióméter típusok (Mecsi & Králik, 1990)
 a.) Monocellás készülék előrefúrt lyukban (Oyo), b.) Menárd féle presszióméter, c.) Önlefúró preszszióméter

2.1 Előrefúrt lyukban végzett presszióméteres vizsgálat (Predrilled pressuremeter)

Szokásos jelölése MPT- pressuremeter test. Először a talajfuratot készítik elő, stabilizálják a furatot a beomlási veszély miatt, majd elhelyezik a speciális presszióméteres szondát a furat kívánt mélységében. Kiépítik a csatlakozásokat az ellenőrző, illetve szabályozó egységhez, és a nyomást előállító tartályhoz. Ehhez a kategóriához tartozik a MÉNARD típusú presszióméter.

2.2 Önlefúró presszióméteres vizsgálat (Self boring pressuremeter SBP)

Nemzetközi jele: SBP pressuremeter test. Ennél a típusnál a kitáguló henger a fúrószárral egybeépített. A presszióméter alsó részén speciálisan kiképzett fúrófej van. A felaprított talajt az öblítő folyadékkal együtt a szár belsejében a felszínre juttatják. A jellegzetes önlefúró pressziómétereket a 2.sz. ábra mutatja be, érzékeltetve a belső felépítés néhány elemét is.

2. ábra. Önlefúró presszióméter (Amar et al. 1984)

Ezzel a módszerrel elérheti, hogy a talajállapot megzavarása a fúrással minimális lehet. A presszióméter átmérőjét meghatározza a beépített műszerek és a fúrási technológia helyigénye. Szokásos átmérője 80 mm. A különböző talajokhoz eltérő kialakítású fúrófejet használnak. A berendezést számítógéppel vezérelt monitoring rendszerrel látják el, az eredmények dokumentálása is számítógép felhasználásával célszerű. A jellegzetes presszióméteres diagramnál a görbe bizonytalan kezdeti szakasza egyértelműen alakul. Lehetőség van a vizsgálatoknál terhelési-tehermentesítési ciklusokat végezni, így a talaj összetettebb viselkedését tanulmányozni.

3 A PRESSZIÓMÉTERES MÉRÉS VÉGREHAJTÁSA

3.1 Kalibráció végrehajtása

A szondagumi membránjának, a mérőkészülék, a manométerek rugalmas alakváltozásából adódó korrekciós tényezőket minden mérési sorozat előtt meg kell határozni, a szonda kalibrálásával. A kalibrálás kiterjed:

- a feszültségcsökkenés meghatározására. jele: PE
 - a térfogatcsökkenés meghatározására. jele: V

A feszültségcsökkenés meghatározása (P) a membrán ellenállásának a meghatározását jelenti. A szonda szabad levegőn történő felfújásával lehet meghatározni. A szonda furatba helyezése előtt meg kell határozni a kezdeti térfogati értéket. (Vo). Vo az atmoszférikus nyomáson terheletlen szondánál mért térfogatot jelenti. Ezután meg kell határozni a szondaközép mélységét. Azonos feszültségnövekményű mérésnél (A módszer) a mérési lépcsőket úgy kell elvenni, hogy a teljes felterhelés 7-10 lépcsőben történjen. Azonos térfogat növekményű mérésnél (B módszer) a térfogat növekedési lépcső a Vo =0.05-0.1 - szerese között legyen. Mindkét módszer esetén a felterhelést követően 30 sec és 1 perc időtartam után leolvasást végzünk a műszereken. A mérés kalibrációját a 3. sz. ábra mutatja be.

3. ábra. A Ménard típusú presszióméteres mérés diagramjának meghatározása. A Ménard típusú presszióméteres nyers diagram konvertálása a mérőberendezés tehetetlenségének, a hidrosztatikus külső nyomás figyelembe vételével. A számításokhoz alkalmas diagram meghatározása. (Mecsi, 2005)

3.2 Hagyományos számítások

A feszültségeket a következő összefüggéssel kell meghatározni:

$$\mathbf{p} = \mathbf{p}_{\mathrm{r}} + \mathbf{p}_{\mathrm{H}} - \mathbf{p}_{\mathrm{e}} \tag{1}$$

ahol p_r - a leolvasott nyomás (bar), p_H a hidrosztatikus nyomás, p_e - a feszültség korrekció A térfogati kitágítás redukálása:

$$\mathbf{V} = \mathbf{V}_{\mathrm{r}} - \mathbf{V}_{\mathrm{e}}$$

ahol V_r – leolvasott térfogat

A korrigált adatokból határozható meg a presszi6méteres diagram, ami a kiértékelések alapja. Az azonos feszültségnövekményű vizsgálatnál a 30 és 60 másodpercnél végzett térfogat leolvasások különbségeiből szerkeszthető az un. kúszási diagram. A kúszási diagram megadja azt az intervallumot ahol a presszióméteres modulus lineárisnak tekinthető. A presszióméteres diagramok értelmezését az 4.sz. ábra mutatja be.

3.3 A Ménard féle presszióméteres modulus értelmezése:

$$E_{M} = 2 \cdot (1 + \nu) \cdot (V_{o} + V_{m}) \cdot \frac{\Delta p}{\Delta V}$$
(3)

ahol E_M - presszióméteres modulus (kPa), v - Poisson tényező (ajánlott érték 0,33), Vm - a korrigált térfogati leolvasás a kúszási diagram konstans tartományának közepén.

A sugárirányú elmozdulás komponens mérésével:

$$E_{M} = (1 + \nu) \cdot (R_{p} + \Delta R_{m}) \cdot \frac{\Delta p}{d\Delta R}$$
(4)

Ahol Rp - kezdeti sugár (mm), ΔR_m - a sugárnövekmény (kitágulás) (mm)

3.4 A határfeszültség értelmezése: (pl.)

A presszióméteres határfeszültségként definiáljuk, azt a feszültséget, aminél a kitágítás mértéke, a térfogat növekedés kétszerese a kiindulási térfogatnak.

A kiindulási térfogat Vo + V1

ahol V1 azt a térfogati leolvasást jelenti, ahol a szonda és a fúrat fala először érintkezik. A határnyomást sokszor nem lehet direkt úton meghatározni, ezért a p-1/V inverz diagram alapján extrapolálás végezhető. Meg kell jegyezni, hogy a presszióméteres határfeszültség gyakorlati jellegű mennyiség, az egyirányú nyomóvizsgálathoz hasonlítható, ami jó tájékoztatást ad a talaj nyírószilárdságáról.

4 TALAJBAN KITÁGÍTOTT HENGER KÖRÜLI FESZÜLTSÉGEK ÉS ELMOZDULÁSOK

A vizsgálat során két paramétert az un. határnyomást és a Ménard féle modulust határozzák meg. A vizsgálat azonban lehetőséget ad arra is, hogy a talajfizikai jellemzők kombinációit becsüljük.

A megfontolások a talajban (kőzetben) kitágított hengeres üregek körüli feszültség és talajrész elmozdulások elméleti vizsgálatára épül.

- A talaj szilárd szemcséi összenyomhatatlanok, a talaj deformációja úgy jön létre, hogy a szemcsék közötti hézagokból a levegő, és/vagy a víz kiszorul.
- A talaj kohéziója kismértékű, azaz nincs másodlagos szerkezete, a terhelés hatására nem roppan össze a talaj, azaz nem kőzetszerűen viselkedik.
- A henger végtelen kiterjedésűnek tekinthető, továbbá végtelen kiterjedésűnek tekinthető talajtömeg veszi körül.

A Mohr-Coulomb összefüggés, a nem lineáris talaj deformáció és a kitágított henger körüli tömörödési tartomány figyelembe vételével kidolgozott modellt vesszük alapul.

4.1 Mohr-Coulomb féle feltétel alkalmazása

A talajok esetében a vizsgálati tartományban megfelelő és általánosan elfogadott, kísérletekkel is alátámasztott Mohr-Coulomb feltételt vehetjük alapul. A Mohr-Coulomb feltétel a főfeszültségek állandó arányát fejezi ki, olyan módon, hogy a legnagyobb főfeszültség esetén az egyirányú nyomószilárdsággal csökkentett értéket vesszük figyelembe. Ennek megfelelően

$$\sigma_3 = \xi \cdot (\sigma_1 - \sigma_u) \tag{5}$$

ahol
$$\xi = \frac{1 - \sin \phi}{1 + \sin \phi}$$
 és $\sigma_u = \frac{2 \cdot c}{\sqrt{\xi}}$ egyirányú nyomószilárdság (6,7)

Az összefüggések érvényesek olyan esetben is, amikor $\phi = 0$. A Mohr-Coulomb összefüggést a főfeszültségi koordináta rendszerben is ábrázolhatjuk. Ebben a rendszerben a főfeszültségek összefüggését az egyirányú nyomószilárdságtól kiinduló $tg\alpha = \frac{1+\sin\phi}{1-\sin\phi}$ hajlású egyenes adja meg a képlékenységi

állapot elérése után.

4. ábra A Mohr-Coulomb feltétel értelmezése a főfeszültségi koordináta rendszerben (Mecsi, 2002)

4.2 Fajlagos alakváltozások

A talajtömeg szemcsemozgásokat korlátozó kölcsönhatása miatt kialakuló tömörödési tartományban, ahol a főfeszültségi arányok meghatározottak, nem lineáris fajlagos alakváltozás jön létre a korábbi talajfeszültségek növekedése alapján (Mecsi, 1992).

Ezt a felkeményedő hatást a deformációs modulus hatványfüggvény szerinti változásával írhatjuk le.

$$\mathsf{E}_{\mathsf{s}} = \mathsf{E}_{\mathsf{o}} \cdot \left(\frac{\sigma}{\sigma_{\mathsf{e}}}\right)^{\mathsf{a}} \tag{8}$$

(9)

ahol $\sigma_{e} = 100 \text{ kN/m}^2$ dimenzió azonosítási érték

A fajlagos alakváltozás értéke ennek megfelelően:

$$\varepsilon = \frac{\sigma_{\rm e}}{\mathsf{E}_{\rm o} \cdot (1-a)} \cdot \left(\frac{\sigma}{\sigma_{\rm e}}\right)^{1-a} \tag{10}$$

A fajlagos alakváltozás összefüggésében a hatványtényező értéke a talajok belső súrlódási szögével hozható szoros összefüggésbe, míg E_0 értéke a talaj kezdeti tömörségével van szorosabb kapcsolatban.(Mecsi 2005, 2006) Általános esetben a=0.35-0.7 között változik, míg túlkonszolidált vagy előterhelt állapot esetén a ≈ 0 érték felvételével számolhatunk. Fajlagos alakváltozások a kezdeti állapothoz képest:

kompresszió (nem lineáris)

$$\Delta \varepsilon = \frac{\sigma^{1-a} - \sigma^{1-a}_{kezdeti}}{(1-a) \cdot E_{o}}$$
(11)

expanzió (lineáris)

$$\Delta \varepsilon = -\frac{\sigma_{\text{kez deti}} - \sigma}{\sigma_{\text{kez deti}}^{a} \cdot \mathsf{E}_{o}}$$
(12)

Meg kell jegyezni, hogy a fajlagos alakváltozásokat mindig egy talajtömeg méreteinek változásaként értelmezzük, azaz nem mikró, hanem makró változásként. Belátható, hogy az összetett feszültségi állapot változásaiból adódó sűrűségváltozás a talajszemcsék mikromozgásaiból alakulhat ki. A mikró szemcsemozgások determináltak, és véletlenszerűek, de az összegező mozgások eredőjeként már a mérnöki számítások számára kezelhetőek lehetnek.

A szemcsés és a kis kohéziójú talajok esetében kísérletekkel alátámasztott összefüggések használhatók. A nagy kohézióval rendelkező anyagoknál döntő az anyag szerkezete, mert nagyobb terhelésnél a szerkezet összeroppan, és ezáltal egészen más tulajdonságú anyag alakul ki, míg a talajoknál ez a hatás nem érvényesül.

4.3 A talaj térfogatváltozása (sűrűségének változása)

A talajok térfogatváltozását (sűrűségének megváltozását) a fajlagos alakváltozásából vezethetjük le. Közelítőleg három egymásra merőleges irányban meghatározott fajlagos alakváltozási változások ösz-szegével számolhatunk.

$$\mathbf{m}_{s} = \frac{\mathbf{V}_{i} - \mathbf{V}_{o}}{\mathbf{V}_{o}} = (\mathbf{1} + \Delta \boldsymbol{\varepsilon}_{r}) \cdot (\mathbf{1} + \Delta \boldsymbol{\varepsilon}_{\nu}) \cdot (\mathbf{1} + \Delta \boldsymbol{\varepsilon}_{\beta}) \approx \Delta \boldsymbol{\varepsilon}_{r} + \Delta \boldsymbol{\varepsilon}_{\nu} + \Delta \boldsymbol{\varepsilon}_{\beta}$$
(13)

4.4 Modell a talajban kitágított henger körüli feszültségek és elmozdulások meghatározására

A bemutatásra kerülő modell a talajban kitágított hengeres üregek elméleti megfontolásain alapul. (Mecsi 2005). A talajba juttatott presszióméteres szonda terhelésével talajkiszorítást végzünk, ezáltal a szonda környezetében a talaj maradandó alakváltozását kényszerítjük ki, ami együtt jár plasztikus feszültségi állapot kialakulásával. Mivel a környező talajtömeg kölcsönhatása miatt talajszemcsék elmozdulása korlátozott, ezért főleg gyűrűirányú nyomófeszültségből adódó tömörödés jön létre fokozatosan növekedő kiterjedésben. A tömörödés mértéke, azaz a talaj felkeményedése véges értékhez tart. A tömörödési zónán kívüli tartományban felhasznált összefüggések:

- Erőegyensúlyi differenciálegyenlet,
- Nem lineáris összefüggés a sugárirányú alakváltozások és feszültségek között. (kompresszió),
- Lineáris összefüggés a gyűrűirányú feszültségek és alakváltozások között (expanzió),
- Nem jön létre térfogatváltozás, nincs sűrűségváltozás

A tömörödési zóna határánál:

- Azonos összefüggések érvényesek, mint a zónán kívüli tartományban, de kiegészül a
- Mohr-Coulomb összefüggéssel.

A tömörödési zónán belül érvényes összefüggések:

- Erőegyensúlyi differenciálegyenlet,
- Mohr-Coulomb összefüggés,
- Nem lineáris összefüggés a sugárirányú alakváltozások és feszültségek között. (kompresszió),
- Nem lineáris vagy lineáris összefüggés a feszültségek és az alakváltozások között attól függően, hogy a feszültségek túllépik-e a kezdeti feszültségeket.

A tömörödési zóna határánál létrejövő feszültségek meghatározását a térfogat állandóság és az erőegyensúlyi egyenletek és a Mohr-Coulomb feltétel felhasználásával nyerjük. A számítási becslések megkönnyítésére a vízszintes irányban a kiindulási feszültségekhez viszonyított arányt az 5. ábra szemlélteti.

5. ábra A tömörödési zóna határánál fellépő sugárirányú talajfeszültségek számítása tengelyszimmetrikus esetben

Vízszintes irányban a talajfeszültségek:

$$\sigma_{r_{H}} = \left(\sigma_{\rho H} + \frac{c}{\tan \varphi}\right) \cdot \left(\frac{\rho}{r}\right)^{\frac{2 \cdot \sin \varphi}{1 + \sin \varphi}} - \frac{c}{\tan \varphi}$$
(14)

Ha ismerjük a kiindulási felületre (r_o) ható sugárirányú feszültség nagyságát, akkor a tömörödési tartomány kiterjedése számítható:

$$\rho = r_{o} \cdot \left(\frac{\sigma_{ro} + \frac{c}{\tan \varphi}}{\sigma_{\rho H} + \frac{c}{\tan \varphi}} \right)^{\frac{1 + \sin \varphi}{2 \sin \varphi}} \quad \text{ahol } r_{o} - a \text{ szonda kezdeti sugara}$$
(15)

A tömörödési zóna kiterjedésének ismeretében a feszültségeloszlás meghatározható a zónán kívüli tartományban a térfogat állandóságának figyelembe vételével. A sugárirányú feszültségek alapján meghatározható a fajlagos talajelmozdulás értékei a (11) képletnek megfelelően. (6. ábra).

6. ábra. Talajfeszültségek, fajlagos elmozdulások, és az összegzett talajtömeg elmozdulás sugárirányú értékei a kitágítás egy meghatározott fázisában.

A fajlagos összenyomódásokból képezhető adott (r_i - r_{i-1}) rétegvastagság összenyomódása

$$\Delta u_{r} = \left(\frac{\Delta \varepsilon_{r_{i}} + \Delta \varepsilon_{r_{i-1}}}{2}\right) \cdot \left(\mathbf{r}_{i} - \mathbf{r}_{i-1}\right)$$
(16)

A teljes talajtömeg összenyomódása a fajlagos alakváltozások integrálásával adható meg.

$$\mathbf{u} \approx \sum_{1}^{N} \left(\varepsilon_{\mathbf{r}_{i}} - \varepsilon_{\mathbf{r}_{i-1}} \right) \cdot \left(\mathbf{r}_{i} - \mathbf{r}_{i-1} \right)$$
(17)

Ahol -N a számításba vett sugár felosztásának darabszámát jelenti.

Az egyes talajrétegek összenyomódásának összegező ábrázolását célszerű elvégezni a kiindulási sugártól kezdődően, mert belátható, hogy bizonyos távolságon túl a talaj összenyomódás mértéke már nem számottevő értékű, ezért az összegezett összenyomódási értékekhez egy aszimptota rajzolható. (6. ábra alsó része)

A talajszemcsék korlátozott elmozdulási lehetősége azonban nem minden irányban érvényesül. A presszióméteres szonda hosszirányú mérete véges. A vízszintes síkban ható sugárirányú feszültség növelésével a kitágított hengernél a függőleges talajfeszültség meghaladhatja a kiindulási geosztatikus nyomás értékét, és ez azt eredményezi, hogy függőleges értelmű talajszemcse mozgások megnövekednek, a terhelési folyamat eredményeként progresszív sugárirányú deformáció is fellép. Ez a jelenség a határnyomás kérdéseivel van összefüggésben.

5 TALAJFIZIKAI ÉS DEFORMÁCIÓS JELLEMZŐK MEGHATÁROZÁSA

5.1 A meghatározás módszere

Áttekintve a modell jellegzetességeit, a terhelési folyamatot bemutató összefüggéseket, megállapíthatjuk, hogy a presszióméteres mérés jól reprezentálja a meghatározott sugárirányú feszültségek és fajlagos sugárirányú elmozdulások összefüggéseit.

A presszióméteres méréseknél a kalibrációval és a talajvízszint helyzetéből adódó korrekciókkal állítjuk elő a presszióméteres szonda sugárirányú kitágítási és a nyomócellára ható belső víznyomási diagramját a vizsgálat folyamán. A szondába sajtolt víz térfogatából számoljuk tehát a kitágított furat elmozdulását, míg a szonda belső víznyomását a talaj sugárirányú feszültségével vesszük azonosnak.

Az így meghatározott diagram értékelése alapján megkíséreljük a modellnél is bevezetett talajfizikai jellemző kombinációkat meghatározni, azaz kiválasztunk olyan kiindulási talajfizikai paramétereket, amelyekkel a mért diagramot a legjobban meg tudjuk közelíteni. (7. ábra)

7. ábra A talajfizikai paraméterek meghatározásának elve (Mecsi, 1999)

A vizsgálatnál felhasználjuk a sugárirányú talajfeszültségekre meghatározott összefüggést (14) $r=r_0$ esetre alkalmazva, melyben ismeretlenként a talajfizikai paraméterek szerepelnek.

Felveszünk súrlódási szög és kohézió kombinációt, valamint a talaj felkeményedését jellemző hatványkitevő értékét. A mért és a felvett értékek kombinációja alapján minden egyes terhelési lépcsőhöz meg tudjuk határozni az ismeretlenként maradó deformációs modulus alapértéket (E_o). Ha jó közelítést találtunk, akkor a mérési pontoknál meghatározott E_{oi} értékek szórásának minimalizálásával már matematikailag kezelhető elméleti diagramot kapunk, ami összevethető a mérési értékekkel.

A számítást könnyíti a kidolgozott program, fokozatos közelítéssel jutva el a legjobb közelítési paraméterekhez. A 8. ábra mutatja be a talajfizikai jellemzők meghatározásának menetét.

8. ábra. A talajfizikai jellemzők meghatározása a presszióméteres mért adatokból. (Mecsi, 1995)

5.2 Példa a presszióméteres diagram alapján elemzésére

Az értékelés bemutatásához kiválasztott presszióméteres vizsgálat kiindulási adatait az ISP5 Pressio 2005 szimpózium 2. kötetében dokumentálták, mely egyben egy versenyfelhívás is volt egy 12 m hosszú 50 cm átmérőjű CFA rendszerű cölöp teherbírásának és terhelés-süllyedési diagramjának a meghatározására. A verseny során a próbaterhelés tényleges mérési eredményei összevethetők voltak a számítások eredményeivel.

A vizsgálati területen részletes talajfeltárást végeztek, laboratóriumi vizsgálatokkal határozták meg a talajok nyírószilárdsági paramétereit, továbbá in situ mérésekkel a talajrétegek penetrációs behatolási ellenállásait. A talajréteg viszonylagosan homogén összetételű volt.

Dolgozatunkban nem térünk ki a presszióméteres vizsgálatok felhasználásával meghatározható cölöp méretezési eljárásra, és a presszióméteres vizsgálat alapján a cölöp és a CPT talajszondázási ellenállás számítási lehetőségeire. Ezzel kapcsolatos vizsgálatok a szerző korábbi publikációiban megtalálhatók. (Mecsi 2005, 2008)

A súrlódási szög laboratóriumban meghatározott értéke 12 m mélységben 23-24°. Kohézió c=60 kPa. A geosztatikus talajfeszültség z=12 m mélységben σ_v =235 kPa. 12 m mélységben meghatározott statikus nyomószonda csúcsellenállása qc=2,5 MPa értékű volt, a standard penetrációs vizsgálati érték SPT 22-24 ütés/30 cm. (9. ábra)

A vizsgálati eredmények is azt mutatják, hogy a presszióméteres mérésekkel megbecsülhető lehet a talajok fizikai jellemzőinek kombinációja.

Látható, hogy a mért diagramot számításokkal meghatározott diagramok jól megközelítik, azaz nem egy meghatározott paraméterű diagram, hanem eltérő kiindulási feltételű (Eo és a kohézió is eltérő) számítással meghatározott görbék.

Alaposan feltételezhető, hogy a kohézió és a talaj deformációs modulusnak alapértéke szoros kapcsolatban van egymással, a kiindulási talajfeszültséggel, továbbá a talaj tömörségével is. Ezt a levezetett összefüggések érzékeltetik. A szerző korábbi vizsgálatai azt is erősítik, hogy a talaj felkeményedő tulajdonságát jellemző hatványkitevő a talaj belső súrlódási szögével hozható összefüggésbe. DOSSIER/.FILE No: 2 Chantier/Site : Exercice Forage/Borehole No: 10 Niveau d'eau/Groundwater level 1.5 m $H = .5 m N^{\circ} CPV: 100$ Pression en/pressure in : bars (daN/m²) Volume :cm³

Etalonnag	e 1		Z probe	.5 m			
press	.0	.2	.5	.7	1.	1.2	1.5
vol	.0	38	95	150	275	388	554
Etalonnage 2			Z probe	.5 m			
press	.0	.2	.5	.7	1.	1.2	1.5
vol	.0	65	156	240	398	515	699

						Ét	alonna	ae 1							
prof	1.	points	13					[1				1		
press	.0	.5	1.	1.5	2.	2.5	3.	3.5	4.	4.5	5.	6.	7.		
Vol	0	116	156	169	183	195	215	232	255	287	345	460	672		
prof	2.	points	11												
press	.0	.5	1.	1.5	2.	2.5	3.	3.5	4.	4.5	5.				
Vol	0	52	77	99	132	174	241	336	426	551	710				
prof	3.	points	11												
press	.0	.5	1.	1.5	2.	2.5	3.	3.5	4.	4.5	5.				
Vol.	0	119	145	165	191	223	258	332	433	542	681				
prof	4.	points	15												
press	.5	1.	1.5	2.	2.5	3.	3.5	4.	4.5	5.	5.5	6.	7.	8.	9.
Vol	146	162	174	185	195	203	212	222	230	254	276	299	366	471	678
prof	5.	points	15												
press	.5	1.	1.5	2.	2.5	3.	3.5	4.	4.5	5.	6.	7.	8.	9.	10.
Vol	34	42	50	56	61	71	81	92	103	116	146	200	286	396	574
				а 		Ét	alonna	ge 2							
prof	.5	points	7												
press	.0	.2	.5	.7	1.	1.2	1.5								
Vol.	0	65	156	240	398	515	699								
prof	6.5	points	13												
press	.0	.5	1.	1.5	2.	2.5	3.	4.	5.	6.	8.	10.	12.		
Vol	0	60	125	140	152	162	172	182	202	225	300	440	700		
prof	7.	points	13												
press	.0	.5	1.	1.5	2.	2.5	3.	4.	5.	6.	8.	10.	12.		
Vol	0	85	100	112	120	126	132	142	154	166	225	360	620		
prof	8.	points	12												l
press	.0	.5	1.	1.5	2.	3.	4.	5.	6.	8.	10.	12.			
Vol.	0	62	75	80	90	100	106	116	125	162	250	530			
prof	9.	points	13												
press	.0	.5	1.	1.5	2.	3.	4.	5.	6.	8.	10.	12.	13.		
Vol	0	80	92	100	106	116	125	134	142	172	240	445	710		
prof	10.	points	12												
press	.0	.5	1.	1.5	2.	3.	4.	5.	6.	8.	10.	12.		-	
Vol	0	70	82	92	98	110	120	135	146	198	305	550			
prof	11.	points	13												ļ
press	.0	.5	1.	1.5	2.	3.	4.	5.	6.	8.	10.	12.	14.		
Vol.	0	78	84	92	96	104	112	116	126	144	195	310	590		
prof	12.	points	14		-	-	<u> </u>			-					
press	.0	.5	1.	1.5	2.	3.	4.	5.	6.	8.	10.	12.	14.	16.	
Vol	0	80	90	100	104	116	122	128	136	154	177	230	370	650	<u> </u>
prof	13.	points	14			•				-				10	
press	.0	.5	1.	1.5	2.	3.	4.	5.	6.	8.	10.	12.	14.	16.	<u> </u>
Vol	0	62	66	70	74	78	82	88	95	110	132	202	330	575	
prot	14.	points	15	-	0.5	0	<u> </u>	-	-	-	40	10		10	10
press	.0	.5	1.5	2.	2.5	3.	4.	5.	6.	8.	10.	12.	14.	16.	18.
Vol	0	90	95	104	106	110	116	120	122	132	148	170	230	350	610

(Reiffsteck, 2005)

64,63mm

800

1000

Nyomás kPa

1400

1200

63,78mr

600

53,11mm

400

-0

200

66

64

62 699,00mm

58 O 0

-												
Furat jele			Súrlódási szög ^{¢=} 23,4deg		ξ=	0,431499	$\sigma_u/\sigma_h/c_=$	0,008114				
Mélység	Z=	12,00 m	Hatványkitevő (fel	a=	0,42	1,431499 2,049189						
D _{furat} D _{begin} = 61,90mm			Kohézió felvett értékei 1,759012									
σ _{zo} = 228,00 kPa			kPa	kPa	kPa	kPa	kPa	kPa	kPa			
σ _{Ho} = 136,00 kPa			30	40	50	60	70	80	90			
$\sigma_{\rho H} [k N/m^2]$			220,92	230,48	240,29	250,38	260,77	271,48	282,56			
c/tano=[kN/m ²]			69,33	92,44	115,55	138,66	161,77	184,88	207,98			
pc	pc	Uro	A tömörödési zóna sugara									
kN/m ²	kN/m ²	mm	cm	cm	cm	cm	cm	cm	cm			
0,0	0,0	Nem értelmezhető										
145,8	145,8	Nem értelmezhető										
193,0	193,0	Nem értelmezhető										
240,3	240,3	0,15	3,47	3,26	3,09	2,95	2,84	2,73	2,64			
289,2	289,2	0,34	4,49	4,15	3,88	3,66	3,47	3,31	3,17			
336,1	336,1	0,93	5,57	5,09	4,71	4,39	4,13	3,91	3,71			
384,6	384,6	1,21	6,80	6,15	5,63	5,21	4,86	4,57	4,32			
483,1	483,1	1,50	9,60	8,55	7,73	7,06	6,51	6,05	5,66			
581,1	581,1	1,88	12,80	11,28	10,09	9,13	8,35	7,70	7,14			
676,8	676,8	2,73	16,29	14,25	12,65	11,38	10,33	9,47	8,73			
871,5	871,5	3,80	24,50	21,19	18,62	16,58	14,92	13,55	12,39			
1060,1	1060,1	6,20	33,78	29,01	25,33	22,41	20,04	18,08	16,45			
1233,0	1233,0	12,17	43,40	37,10	32,24	28,40	25,29	22,73	20,60			

11. ábra. A talajfizikai jellemzők meghatározására kidolgozott program részlete. (Mecsi 2009)

6 ÖSSZEFOGLALÁS

A cikk az in situ talajvizsgálati módszerek közül a presszióméteres vizsgálati módszerrel foglalkozik. Áttekintést ad a presszióméteres mérések elterjedt típusairól, a presszióméteres diagram hagyományos értékeléséről, ami a mérnöki gyakorlatban – főleg francia területeken - a talajviselkedés "mérnöki érzékiségének" megteremtésében bírt nagy jelentőséggel. A cikk második részében a talajban kitágított henger körül kialakuló feszültségek és talajelmozdulások modellezését mutatja be, felhasználva a Mohr-Coulomb feltételnek a talajokra, mint tömörödő anyagokra levezetett összefüggéseit. Bemutatja egy konkrét példán keresztül a talajfizikai jellemzők (kombinációk) meghatározási lehetőségeit.

IRODALMI HIVATKOZÁSOK

- Amar S, Clarke B.G. et al 1984: The application of Pressuremeter test results to foundation design in Europe. ISSMGE European Technical Committe on Pressuremeters. *Collection of the ISSMGE ETC 4 Committee*.
- Mecsi J., Králik B. 1990: *Technical Directive using in-situ pressuremeter surveys* (SZM-47/88) Government Technical Development Committee.
- Mecsi J. 1992: A talajban kitágított hengeres üreg körül kialakuló feszültségek elmozdulásoktérfogat-változások meghatározása. *Kandidátusi értekezés p125*.
- Mecsi J. 1995: Some inspiring ideas for the application of the cylindrical cavity theory *The Pressure*meter and its New Avenues, Ballivy (ed.) 1995. Sherbrook, Canada), Balkema, 461-471.
- Mecsi J. 1999: New concept in the interpretation of the plastic condition of soils and solutions for the investigation of its interaction with engineering structures. *Univ.of Miskolc. Dr. habil. Thesis. p.50.*
- Mecsi J. 2002: New Expanded Cylindrical and Spherical Theory Concept in Soil Plasticity. Damage and Fracture at Macro, Micro and Nano Scales. Proc. of Plasticity '02 *The Ninth International Symposium on Plasticity and Its Current Applications. Neat Press, Fulton USA*. 507-511
- Mecsi J. 2005: Alteration of soil stress/strain condition in the surrounding of the base of pile. *Proc.* 11th Int. Conf. on Computer Methods and Advances in Geotechnics. Torino, 19-24 June 2005. 515-523
- Mecsi J. 2005: Densification and plastic behaviour of soils under the pile base A XV: Nemzetközi Talajmechanikai és Alapozási Konferencia Osaka 2005. 1219-1222
- Mecsi J. 2006: Calculation of the load bearing capacity of pile using the Ménard pressuremeter tests. *ISP5 International Symposium of pressuremeters. Paris Aug. 2005.* **2:** 585-594
- Mecsi J. 2006: *The Pressuremeter tests and the theory of pressuremeters in Hungary* ISP5 International Symposium of pressuremeters. Paris Aug. 2006. **2:** 411-416
- Mecsi J. 2006: *Stress-strain Condition around the pile point* XIII. Danube European Conf. on Geotechnical Engng 29-31 05. 2005 Ljubjana, Slovenia. Special and keynote lectures 1: 268-277
- Mecsi J. 2008: Terheléssel a szilárdságukat növelő és emlékező anyagok a geotechnikai számításokban. Dr. Kézdi Árpád emlékkonferencia 2008. szeptember 23-24. 87-97
- Reiffsteck P. 2005: Portentance et tassements d'une fondation profonde présentation resultats du concours de prévision ISP5 Pressio 2005 Symposium international 50 ans de pressiométres. Marne –la Vallée 22-24 août 2005. Edited by M. Gambin, J.P. Magnan, P. Mestat. **2:** 521-535