# DURVA MÉSZKÖVEK VÍZFELVÉTELI TULAJDONSÁGAI

#### Pápay Zita, Török Ákos

BME, Építőanyagok és Mérnökgeológia Tanszék zita.papay@googlemail.com; torokakos@mail.bme.hu

Összefoglalás: Tanulmányunkban a durva mészkövek vízfelvételi tulajdonságait vizsgáltuk három különböző vízfelvételi kísérlettel. Az épülethomlokzatot érő csapóeső hatását kőzettömbön végzett pipás vízbeszívással modelleztük. A kapilláris pórusok szerepét kapilláris vízfelszívási kísérlettel modelleztük. Végül meghatároztuk próbatestek vízfelvételét úgy, hogy a mintákat vízbe helyezve súlyállandóságig hagytuk telítődni. A kísérletekhez négy különböző sóskúti durva mészkő típust használtunk.

Kulcs szavak: durva mészkő, porozitás, pipás vízfelvétel, kapilláris felszívás, víztelítés légköri nyomáson

# 1. Bevezetés

A sóskúti durva mészkövet számos műemlékünkben megtaláljuk. Ezek a műemlékek azonban sok esetben jelentős mértékű kőzetpusztulást mutatnak, aminek egyik fő oka – a légszennyezés mellett (Kieslinger, 1949, Kertész 1988, Török 1997, 2002, 2003, Rozgonyi 2002)– a durva mészkő vízérzékenysége.

A pórusok víztelítődésével a kőzet érzékenyen reagál a fagyra, ezen kívül a csapadék oldott komponenseket és porszemcséket juttathat be a kőzet pórusrendszerébe ezáltal elősegítve a kőzet tönkremenetelét. Ahhoz, hogy értsük ezeket a folyamatokat célszerűnek látszott a durva mészkő vízfelvételi tulajdonságait tanulmányozni és összevetni azt, hogy a kapilláris vízfelszívás, a teljes víztelítés, vagy a pipás felszívás milyen mértékű víztelítést okoz. A kísérletekhez négy különböző kőzetanyagot használtunk azért, hogy megfigyelhessük a porozitás hatását a különböző vízfelvételi módozatokra. Azt is fontos megjegyezni, hogy a kőzetek és ezen belül a durva mészkövek szilárdságát jelentősen befolyásolja a víztartalmuk, amit Rozgonyi (2003), Vásárhelyi (2005) és Pápay (2006) mérései is megmutattak.

# 2. Vizsgált kőzetek

A vizsgált kőzetanyag miocén, ooidos durva mészkő. A sóskúti mészkőbányában négy különböző tömböt választottunk ki, azért, hogy a durva mészkő minél több kőzetváltozatának tulajdonságait vizsgáljuk: egy durvaszemű, finomszemű, és két középszemű változatot használtunk a kísérletekhez (1. ábra). A durvaszemű kőzetváltozaton szabad szemmel is nagyobb méretű bioklasztokat (kagylók, csigák) figyelhetünk meg. A két középszemű tömb szabad szemmel nehezen megkülönböztethető. Kisebb pórusokat tartalmaznak és apró mikro-ooidok alkotják szövetüket. A finomszemű változat közepesen cementált, pórusai igen kicsik.



1. ábra. A vizsgált durva mészkő típusok: (a) durvaszemű, (b)finomszemű, (c) középszemű A és (d) középszemű B változat

#### 3. Kőzetek porozitása és vízfelvétele

A pórusrendszert alkotó pórusok mérete széles tartományok között ingadozhat a kristályokon belül található nanométeres mikropórusoktól a néhány milliméteres, centiméteres makropórusokig. A méret mellett nagyon fontos a pórusok genetikája, kialakulások. Leegyszerűsítve a folyamatokat alapvetően a kőzet keletkezésével egyidős (szingenetikus) és azt követően kialakuló pórusokat ismerhetünk fel. Üledékes kőzeteknél diagenetikai folyamatok több fázisát lehet megadni, amelyekhez rendszerint porozitás változás (növekedés vagy csökkenés) kapcsolódik. A magmás és metamorf kőzeteknél a porozitás változás kevésbé szembetűnő folyamat (Choquette és Pray 1970).

A pórusrendszer az építőkövek egyik legfontosabb jellemzője, és nagymértékben meghatározza viselkedésüket, időállóságukat. Jellemző és megadható értékei a pórustérfogat, a pórusnagyság, a pórusalak, a póruseloszlás és a pórusfelszín. Ezek ismeretében megállapítható a kőzetben a folyékony fázisok mozgása (Fitzner és Basten 1992).

A különféle módon kialakult pórusrendszerek leírására és besorolására többféle rendszerezési sémát alkalmaznak aszerint, hogy mi a vizsgálat alapja. A légáteresztő képességet (permeabilitás) vizsgálva megfigyelhetünk nyitott és zárt porozitást. Nyitott pórus, minden olyan pórustér, amely a körülvevő légkörrel kapcsolatban áll. Ezt a csoportot tovább oszthatjuk átjárható vagy közlekedő és nem átjárható porozitásra. Előbbi egymással hálózatosan összekötött, átjárható csatornákból tevődik össze, utóbbit egy oldalról lezárt pórusok jellemzik. Zárt porozitás alatt a pórusok teljes mértékű elszigeteltségét értjük (2. ábra).

A pórustér további részletezése céljából a pórushálózatot alakjuk és származásuk szerint változatos, idealizált pórustípusokra oszthatjuk pl. gömb-, henger-, lemez-, ékpórus. Származás alapján Fitzner és Basten (1992) megkülönböztet rés-, oldódási- és zsugorodási pórust.

A kőzetek pórustere rendkívül változatos (méret, genetika), ezért elemzésükhöz nem elegendő egyetlen fajta eljárás. A vizsgálat direkt vagy indirekt méréssel végezhető. A közvetlen eljárás a pórustér optikai vagy elektronmikroszkópos ábrázolását és mérését

jelenti. Közvetett módszer alatt a pórustérben folyékony fázisok mozgásának (felvétel és leadás) vagy gázok pórusfelszínen való szorpciójának megfigyelését értjük. A kőzet pórusszerkezetéről akkor kapunk a valósághoz legközelibb képet, ha kombináljuk a direkt (mikroszkópos) és az indirekt eljárásokat (Fitzner és Basten, 1992), ezért tanulmányunkban a két módszert együttesen alkalmaztuk.



2. ábra. Pórusok különböző fajtái

#### 4. Vizsgálatok

A durva mészkő típusok optikai vizsgálatát polarizációs mikroszkóppal végeztük el. A légszáraz állapotú kőzetanyagon, a próbatestek kivágása előtt, pipás vízfelvételi kísérletet végeztünk, hogy a kőzet vízfelvételét megállapítsuk. A vizsgálat során a tömbök portalanított, simára vágott felületére gittel üveg pipát erősítettük, és a pipán található cm<sup>3</sup> mérőosztás segítségével megmértük 10 cm<sup>3</sup> víz felszívódásának idejét (3. ábra). A mérést a szedimentációval párhuzamosan és arra merőlegesen 2-2 egymással szemben lévő oldalon végeztük el. Ez a mérési módszer a durva mészkövek helyszíni vízfelvételi tulajdonságainak meghatározására is kiválóan alkalmas (Török 2004).



3. ábra. Pipás vízbeszívási kísérlet elvi ábrája

A kapilláris vízfelvételt 40 mm átmérőjű és180 mm magasságú próbatestekkel modelleztük. A mintákat vízzel teli tálcában műanyagrácsra állítottuk, úgyhogy a víz a

próbatest alját 0,5 cm magasságban ellepje. A kőzetbe alulról beszivárgó víz szintjének magasságát és a próbatest tömegét 15, 30, 60, majd 300 másodpercenként mértük egészen addig, amíg a vízszint a próbatest tetejét el nem érte.

Az eljárás során [MSZ18284/3-79] a kiválasztott mintákat egy vízzel teli kádba helyeztük úgy, hogy a folyadék teljesen ellepje, úgy hogy minden irányból akadálytalan vízfelvételt biztosítsunk. 40 napig telítődtek a próbatesteket, ezalatt az első tíz percben percenként, majd 10 percenként ill. óránként, később 1, 4, 5, 8, 12, 18 és 40 nap elteltével mértük a minták tömegét. A víztelítés eredményei alapján meghatároztuk a kőzetanyag porozitását. A számításkor feltételeztük, hogy a pórusok össztérfogata azonos a kőzet alapvíztartalmának és a kőzetbe víztelítéssel behatoló folyadék térfogatának összegével.

A kísérletsorozat utolsó lépéseként a kőzetek tönkremenetelének jellemzését szabványos szilárdsági vizsgálatok alapján (MSZ 18285/1-79, MSZ 18285/2-79) állapítottam meg.

# 5. Eredmények értékelése

A durvaszemű változat szövetszerkezetén szabad szemmel is megállapítható- és a csiszolati kép is alátámasztja-, hogy héjtöredékek találhatók benne. Ebben a bioklasztos kőzetanyagban a szemcséket nagyon kevés és vékony kalcit mikropátos cement köti össze. Tized milliméteres és centiméteres karbonát szemcséket is megfigyelhetünk, tehát a szemcsék rosszul osztályozottak (4. ábra).



4. ábra. Durvaszemű változat csiszolati képe

A középszemű 'A' típus felvételein kerekített karbonát szemcséket találunk (mikroooidos, ooidos). A kőzetanyag szemcseközi porozitást tartalmazó, vékony, mikrométeres, mikropátos cementben szegény. Mikrites alapanyag egyáltalán nem fordul elő, a szemcsék jól osztályozottak. Az ooidok magjában gyakoriak a kvarc szemcsék (5. ábra).

A középszemű 'B' szintén – hasonlóan a középszemű A – ooidos szövetű. Az ooidok magjában ennél a típusnál is megtaláljuk a kvarc szemcséket. A szemcséket azonban

csak egy nagyon vékony mikropátos cement réteg cementálja. Foltokban mikrites cement is megjelenik, amely gyengíti a kőzetanyag ezen részeinek szilárdságát (6. ábra).



5. ábra. Középszemű A típus csiszolati képe



6. ábra. Középszemű B változat csiszolati képe

A finomszemű típus kőzetanyaga mikrites alapanyagban nagyobb héjtöredékeket és ősmaradványokat tartalmaz. Pórusrendszere szabálytalan méretű és eloszlású, a nagyon finom pórusok mellett nagyméretű pórusokat és szemcsék közötti porozitást találunk benne (7. ábra).



7. ábra. Finomszemű típus csiszolati képe

A csiszolati képeken a mikro- és kapilláris pórusok mellett a durvaszemű mészkő felvételénél 1 és 2mm, a középszemű 'A' típusnál 0,2 és 1,2mm, a középszemű 'B' változatnál 0,3 és 0,8mm közöttiek a pórusátmérők. A finomszemű mészkő esetén 0,05 és 0,5mm-es átmérőjű pórusok mellett helyenként nagyobb 0,7mm-es pórusok figyelhetők meg.

A különböző tömbök porozitását a szárítási kísérlet alapján meghatározott alapvíztartalom térfogata és a víztelítés V%-ban meghatározott értékének (8. ábra) összegeként határoztuk meg típusonként 30 darab próbatestre. A kapott eredményekből átlagértéket számoltunk, amit az ábrán függőleges vonallal jelöltünk. A finomszemű mészkő porozitása a legnagyobb (36,24 V%), a két középszemű tömb (24,11 V%, 27,20 V%) közel azonos, a nagy pórusokat tartalmazó durvaszemű tömb eredménye a legalacsonyabb (20,13 V%).



Sóskúti durva mészkő próbatestek látszólagos porozitás értékei

8. ábra. Négyféle sóskúti durva mészkő tömbből származó próbatestek porozitás értékei

A különböző vízfelvételei kísérletek az épületrészek átnedvesedését modellezik. A pipás vízbeszívás a csapóesőkor a homlokzaton lefolyó esővíz, a kapilláris vízfelszívás – szintén a csapóeső – valamint az elégtelen szigetelés következtében felszökő talajnedvesség hatásának vizsgálata.

A durvaszemű tömbön nem tudtuk meghatározni a pipás vízbeszívás értékét, mert a durvaszemű tömb nagy pórusai olyan gyorsan elvezették a vizet, hogy a 10 ml-es vízmennyiség kevesebb, mint 1 másodperc alatt elfolyt. A finomszemű tömb vízfelvétele lassabban indul meg, mint a két középszemű tömbé. Ez a 9. ábrán nagyon jól megfigyelhető, mert a viselkedését szemléltető egyenes meredeksége jóval kisebb, mint a többi tömbé. A jelenség a kőzetanyagban található kicsi pórus átmérőkkel magyarázható. A két középszemű változat porozitása egymáshoz hasonló (24,11 V% és 27,20 V%), de a középszemű 'A' kőzetanyag valószínűleg több átjárható pórust

tartalmaz, mert a pipás vízfelszívás alkalmával a középszemű 'B' porozitásánál alacsonyabb pórus tartalma ellenére gyorsabban vette fel a vizet, tehát meredekebb egyenest kaptunk mért értékei alapján.



9. ábra. Pipás vízbeszívás sóskúti durva mészkövön réteggel párhuzamosan

A vízfelvétel lassabban játszódik le a rétegzésre merőlegesen (10. ábra), ami a kőzet keletkezése alatt kialakult üledékes szerkezeteknek, enyhe rétegzettségének következménye. A pipás vízbeszívás eredménye ellenére a kőzetet úgy kell beépíteni, hogy a függőleges irány a szedimentációra merőleges legyen, így a vízfelszívás szedimentációval párhuzamosan történik, de a szilárdsági tulajdonságai jóval kedvezőbbek és elkerülhető a fagy hatására szedimentációval párhuzamosan kialakuló lemezes leválás.



10. ábra. Pipás vízbeszívás sóskúti durva mészkövön réteggel merőlegesen

A kapilláris vízfelvétel már a durvaszemű mészkövön is mérhető volt (11. ábra). A nagy pórusokkal rendelkező, bioklasztos kőzetanyag kapilláris vízfelvétele volt a leggyorsabb. A finomszemű változat telítődése lassabban indul meg, mint a többi tömbé, de nagy és apró porozitása következtében telítődése a legkésőbb következik be (1. táblázat).

| Durva mészkő típusok | Telítődés ideje [perc] | Tömegváltozás [m%] |  |
|----------------------|------------------------|--------------------|--|
| durvaszemű           | 35                     | 10,17              |  |
| közénezemű A         | 25                     | 9,44               |  |
| kozepszemu A         | 20                     | 8,65               |  |
| középszemű B         | 55                     | 10,34              |  |
|                      | 40                     | 10,26              |  |
| finomszemű           | 69                     | 10,02              |  |

1.táblázat. Különböző típusok telítődése kapilláris vízfelvételi kísérlet során

A két középszemű tömb között kapilláris vízfelvétel során is ugyanaz a különbség figyelhető meg, mint a pipás vízbeszívásnál, hogy a középszemű 'A' típus gyorsabb, de kisebb mennyiségben szívja fel a vizet, mint a középszemű 'B'. Ez – a már említett – nagyobb mértékű átjárható porozitással, de kisebb pórustérfogattal magyarázható.



11. ábra. A mészkőbe felszökő víz magassága kapilláris vízfelvétel során

A légköri nyomáson végzett víztelítés első 5 percét mutatja a 12. ábra. Az egyenesek kezdeti meredekségének vizsgálata alapján eddigi megállapításaink igazolódnak, a finomszemű változat apró pórusainak víztelítése lassan indul meg, de hosszan elnyúlik.

A nyomószilárdsági értékeket a 2. táblázatban foglaltuk össze. Légszáraz kőzetfizikai állapotban a legnagyobb szilárdságot a középszemű 'A' tömb (átlag 15,41 MPa) mutatta, kevesebbet az azonos szövetszerkezetű, szintén középszemű 'B' (átlag 11,63 MPa). Ez az utóbbi foltokban gyengébb cementációjával magyarázható. A két tömb közötti nyomószilárdságbeli különbség víztelítés után mért értékeknél is megfigyelhető, de kisebb mértékben. A legnagyobb változást a finomszemű típus mutatta, szilárdsága víztelítés hatására jelentősen lecsökkent. A durvaszemű mészkő légszáraz nyomószilárdsága (átlag 2,64 MPa) jóval alacsonyabb, mint a többi változaté, de víztelítés hatására eredményeiben nem mutatkozik nagy változás.

|                         | Nyomószilárdság [MPa] |              |              |            |  |
|-------------------------|-----------------------|--------------|--------------|------------|--|
| Kőzetfizikai<br>állapot | Durvaszemű            | Középszemű A | Középszemű B | Finomszemű |  |
| Légszáraz               | 2,64                  | 15,41        | 11,63        | 6,29       |  |
| Vízzel telített         | 2,06                  | 10,75        | 10,07        | 1,73       |  |

2. táblázat. Sóskúti durva mészkő tömbök átlag nyomószilárdság értékei



A különböző kőzetfizikai állapotokban meghatározott átlag húzószilárdsági értékeket a 3. táblázat tartalmazza.

|                      | Nyomószilárdság [MPa] |              |              |            |  |
|----------------------|-----------------------|--------------|--------------|------------|--|
| Kőzetfizikai állapot | Durvaszemű            | Középszemű A | Középszemű B | Finomszemű |  |
| Légszáraz            | 0,62                  | 1,42         | 1,48         | 0,89       |  |
| Vízzel telített      | 0,49                  | 1,02         | 0,86         | 0,30       |  |

3. táblázat. Sóskúti durva mészkő tömbök átlag húzószilárdság értékei

Légszáraz állapotban – a nyomószilárdsági értékekhez hasonlóan – szintén a durvaszemű tömb eredménye (0,62 MPa) a legalacsonyabb. A finomszemű mészkő értéke valamivel nagyobb (0,89 MPa), de a víztelítés során szilárdsága – a vizsgált típusok közül legnagyobb mértékben – több mint felére csökkent.

# 6. Következtetések

A vizsgált kőzetanyag három szabad szemmel is jól megkülönböztethető (durvaszemű, középszemű és finomszemű durva mészkő) típusba sorolható és ez az eltérés a szilárdsági eredményekben is megmutatkozott. A durva mészkő minden típusa érzékeny a környezeti hatásokra, amelyek elsősorban nagy vízfelvevő képességüknek köszönhetünk.

A próbatestek nyomó- és húzószilárdsága víz hatására lecsökken. A finomszemű durva mészkő a legvízérzékenyebb, a víztelítéskor ez a típus ment leghamarabb tönkre. Kísérletek alapján megállapíthatjuk, hogy a durva mészkövek szilárdsági tulajdonságaira és a mállási folyamat várható gyorsaságára elsősorban a szövetszerkezetükből következtethetünk. A három fajta vízfelvételi kísérlet (pipás, kapilláris vízfelvétel és víztelítés) jó képet adott a kőzetek porozitási jellemzőiről, így várható viselkedéséről.

A vízfelvételi vizsgálatoknak a gyakorlati alkalmazását az indokolja, hogy ezekkel a roncsolásmentes vizsgálati módszerekkel következtethetünk a kőzet jövőbeni várható viselkedésére, időállóságára. A labor vizsgálatok azt is igazolták, hogy a durva mészkőből épült műemlékeknél ill. épületeknél különös figyelmet kell fordítani arra, hogy víz ne érje a kőzetet, azaz meg kell akadályozni, hogy a durva mészkő átázzon, mert ezáltal a kőzet szilárdsága jelentősen csökken.

#### Köszönetnyilvánítás

Köszönettel tarozunk Dr. Rozgonyi Nikolettának és Kárpáti Lászlónak. Hálásak vagyunk az Építőanyagok és Mérnökgeológia Tanszék Kőzetfizikai Laborjában dolgozó munkatársaknak, Emszt Gyulának, Árpás Endre Lászlónak és Kovács-S. Bélánénak akik a kísérletekben segítettek. A kutatómunkát részben a DAAD német-magyar kutatási program támogatta (DAAD-MÖB 30.sz. projekt).

# Hivatkozások

- Choquette, P.W és Pray, L.C. 1970. Geologic nomenclature and classification of porosity in sedimentary carbonates. Bull. Amer Ass. Petrol. Geol. 54/2, 107-250.
- Fitzner B, Basten D. 1992. Gesteinporosität Klassifizierung, meßtechnische Erfassung und Bewertung ihrer Verwitterungsrelevanz / Kőzetek porozitása – csoportosítás, mérési módszerek és a mállási folyamatokban játszott szerepének értékelése, Ernst & Sohn GmbH. Verlag, 19-32.
- Kieslinger, A. 1949. Die Steine von Sankt Stephan. Verlag Herold, Wien, 486 p.
- Kertész P. 1988. Decay and conservation of Hungarian building stones. In: Marinos P.G. és Koukis, G.C. (szerk.) The Engineering Geology of Ancient Works, Monuments and Historical Sites. IEAG Conference Proceedings, Athens, Balkema, Rotterdam, II, 755-761.
- Pápay Z. 2006. Durva mészkőbe vágott pincék földtani környezetének és állékonyságának vizsgálata. Diplomamunka, BME Építőanyagok és Mérnökgeológiai Tanszék, 79p.
- Rozgonyi N. 2002. Durva mészkő viselkedése légköri szennyeződés hatására. Építőanyagok 54, 2, 30-37
- Rozgonyi N. 2003. Durva mészkövek időállósági tulajdonságai. In: Török, Á. (szerk.), *Mérnökgeológiai Jubileumi Konferencia*, Műegyetemi Kiadó, Budapest, 277-285.
- Török, Á. 1997. Deterioration of limestone buildings as a result of air pollution, examples from Budapest. In: Marinos, P.G., Koukis, G., Tsiambaos, G.,

Stournaras, G. (Eds.), *Engineering Geology and the Environment, IAEG 1997 Athens*, Balkema (Rotterdam), III., 3269-3273.

- Török, Á. 2002. Oolitic limestone in polluted atmospheric environment in Budapest: weathering phenomena and alterations in physical properties. In: S. Siegesmund, Weiss, T.S., and Vollbrecht, A (eds.) *Natural Stones, Weathering Phenomena, Conservation Strategies and Case Studies*. Geological Society, London, Special Publications 205, 2002. 363-379.
- Török Á. 2003. Durva mészkőből épült műemlékek károsodása légszennyezés hatására. In: Török, Á. (szerk.), *Mérnökgeológiai Jubileumi Konferencia*, Műegyetemi Kiadó, Budapest, 287-301.
- Török Á. 2004. Műemlékek kőzeteinek anyagvizsgálata. *Anyagvizsgálók lapja*, 14.1, 3-4.
- Vásárhelyi B. 2005. Statistical Analysis of the Influence of Water Content on the Strength of the Miocene Limestone, Rock Mech. Rock Engng., 38 (1), Springer-Verlag, 69–76

#### Vizsgálati szabványok

- MSZ 18282/4-78 Építési kőanyagok mintavétele és vizsgálati rendszere. Próbatestek és próbahalmazok előállítása és előkészítése vizsgálatra.
- MSZ18284/3-79 Építési kőanyagok tömegösszetételi vizsgálatai. Víztartalmi jellemzők vizsgálata
- MSZ18285/1-79 Építési kőanyagok szilárdságvizsgálata próbatesten. Egyirányú nyomóvizsgálat
- MSZ18285/2-79 Építési kőanyagok szilárdságvizsgálata próbatesten. Közvetett húzóvizsgálat

Megjegyzés: A vizsgálatok többsége még az új EN szabványok bevezetése előtt készült.